581 research outputs found

    Heat flux measurements and modelling in the RFX-mod experiment

    Get PDF
    The knowledge of edge plasma transport parameters and plasma edge phenomena is a key element in the design of the first wall for a magnetically confined fusion experiment. In RFX-mod heat flux measurement and edge transport modelling have been done to improve the understanding of this aspect. Heat flux deposition profiles have been evaluated from infrared temperature measurements of insertable graphite limiters. They were inserted up to 12 mm into the reversed field pinch plasma of ohmically heated discharges with Ip= 0.6÷1.0 MA, ne= 0.5÷3·1019 m−3 (n/nG< 0.7) and total power of about 10÷15 MW. Strong asymmetries in heat flux deposition have been measured in poloidal direction at low density between the electron and the ion drift side and smaller ones in toroidal direction when q(a)≠0. The poloidal asymmetry has been associated to the presence of superthermal electrons [1] while the toroidal one has been less clearly identified as due to the small toroidal extension of the limiters. To account for the 2D deposition nature of heat load on the surface of the employed limiters, a simple 3D code has been developed to evaluate heat flux from temperature data. In this way at the deeper limiter insertions a heat flux decay length of about 2 mm and 2.5 mm has been evaluated in electron and ion drift sides. Modelling of the evaluated heat fluxes has been done using the SOLEDGE2D-EIRENE edge code [2]. This fluid code is well suited for the RFX-mod wall limiter configuration because, thanks to the implemented penalization technique, the computational domain can be extended up to the entire first wall. Edge modelling has shown that measured decay lengths are compatible with energy diffusion coefficients in Scrape Off Layer (SOL) smaller than those commonly evaluated at plasma edge; the cause of the reduced diffusion in the SOL will be discussed in the paper

    Implementation of multi-component Zhdanov closure in SOLEDGE3X

    Get PDF
    The multi-component fluid closure derived by Zhdanov (2002 Transport Processes in Multicomponent Plasma (London: Taylor and Francis)) is implemented in the fluid code SOLEDGE3X-EIRENE to deal with arbitrary edge plasma composition. The closure assumes no distinction between species such as light versus heavy species separation. The work of Zhdanov is rewritten in a matricial form in order to clearly link friction forces and heat fluxes to the different species velocities and temperature gradients

    3D structure and dynamics of filaments in turbulence simulations of WEST diverted plasmas

    Get PDF
    International audienceWe study the effect of a diverted magnetic geometry on edge plasma turbulence, focusing on the three-dimensional structure and dynamics of filaments, also called blobs, in simulations of the WEST tokamak, featuring a primary and secondary X-point. For this purpose, in addition to classical analysis techniques, we apply here a novel fully 3D Blob Recognition And Tracking (BRAT) algorithm, allowing for the first time to resolve the three-dimensional structure and dynamics of the blobs in a turbulent 3D plasma featuring a realistic magnetic geometry. The results are tested against existing theoretical scalings of blob velocity [Myra et al, Physics of Plasmas 2006]. The complementary analysis of the 3D structure of the filaments shows how they disconnect from the divertor plate in the vicinity of the X-points, leading to a transition from a sheath-connected regime to the ideal-interchange one. Furthermore, the numerical results show non-negligible effects of the turbulent background plasma: approximately half of the detected filaments are involved in mutual interactions, eventually resulting in negative radial velocities, and a fraction of the filaments is generated by turbulence directly below the X-point

    Soledge2D‐Eirene simulations of the Pilot‐PSI linear plasma device compared to experimental data

    Get PDF
    Predictions for the operation of tokamak divertors are reliant on edge plasma simulations typically utilizing a fluid plasma code in combination with a Monte Carlo code for neutral species. Pilot‐PSI is a linear device operating with a cascaded arc plasma source that produces plasmas comparable to those expected in the ITER divertor (Te ∼ 1 eV, ne ∼ 1021&nbsp;m−3). In this study, plasma discharges in Pilot‐PSI are modelled using the Soledge2D fluid plasma code coupled to the Eirene neutral Monte Carlo code. The plasma is generated using an external source of plasma density and power. These input parameters are tuned in order to match Thomson scattering (TS) measurements close to the cascaded arc source nozzle. The sensitivity of the simulations to different atomic physics models is explored. It is found that elastic collisions between ions and hydrogen molecules have a strong influence on calculated profiles. Without their inclusion, supersonic flow regimes are obtained with M ∼ 2 close to the target plate. Simulation results are compared with experimental findings using TS close to the target and, in the case of Pilot‐PSI, a Langmuir probe embedded in the target. Comparison between experimental trends observed in a background pressure scan and the simulations show that the inclusion of the elastic collision is mandatory for the trends to be reproduced.</p

    Assessment of alternative divertor configurations as an exhaust solution for DEMO

    Get PDF
    Plasma exhaust has been identified as a major challenge towards the realisation of magnetic confinement fusion. To mitigate the risk that the single null divertor (SND) with a high radiation fraction in the scrape-of-layer (SOL) adopted for ITER will not extrapolate to a DEMO reactor, the EUROfusion consortium is assessing potential benefits and engineering challenges of alternative divertor configurations. Alternative configurations that could be readily adopted in a DEMO design include the X divertor (XD), the Super-X divertor (SXD), the Snowflake divertor (SFD) and the double null divertor (DND). The flux flaring towards the divertor target of the XD is limited by the minimum grazing angle at the target set by gaps and misalignments. The characteristic increase of the target radius in the SXD is a trade-off with the increased TF coil volume, but, ultimately, also limited by forces onto coils. Engineering constraints also limit XD and SXD characteristics to the outer divertor leg with a solution for the inner leg requiring up-down symmetric configurations. Capital cost increases with respect to a SND configuration are largest for SXD and SFD, which require both significantly more poloidal field coil conductors and in the case of the SXD also more toroidal field coil conductors. Boundary models with increasing degrees of complexity have been used to predict the beneficial effect of the alternative configurations on exhaust performance. While all alternative configurations should decrease the power that must be radiated in the outer divertor, only the DND and possibly the SFD also ease the radiation requirements in the inner divertor. These decreases of the radiation requirements are however expected to be small making the ability of alternative divertors to increase divertor radiation without excessive core performance degradation their main advantage. Initial 2D fluid modeling of argon seeding in XD and SFD configurations indicate such advantages over the SND, while results for SXD and DND are still pending. Additional improvements, expected from increased turbulence in the low poloidal field region of the SFD also remain to be verified. A more precise comparison with the SND as well as absolute quantitative predictions for all configurations requires more complete physics models that are currently only being developed

    Preliminary analysis of alternative divertors for DEMO

    Get PDF
    A physics and engineering analysis of alternative divertor configurations is carried out by examining benefits and problems by comparing the baseline single null solution with a Snowflake, an X- and a Super-X divertor. It is observed that alternative configurations can provide margin and resilience against large power fluctuations, but their engineering has intrinsic difficulties, especially in the balance between structural solidity and accessibility of the components and when the specific poloidal field coil positioning poses further constraints. A hybrid between the X- and Super-X divertor is proposed as a possible solution to the integration challenge

    Hermes : global plasma edge fluid turbulence simulations

    Get PDF
    The transport of heat and particles in the relatively collisional edge regions of magnetically confined plasmas is a scientifically challenging and technologically important problem. Understanding and predicting this transport requires the self-consistent evolution of plasma fluctuations, global profiles and flows, but the numerical tools capable of doing this in realistic (diverted) geometry are only now being developed. Here a 5-field reduced 2-fluid plasma model for the study of instabilities and turbulence in magnetised plasmas is presented, built on the BOUT++ framework. This cold ion model allows the evolution of global profiles, electric fields and flows on transport timescales, with flux-driven cross-field transport determined self-consistently by electromagnetic turbulence. Developments in the model formulation and numerical implementation are described, and simulations are performed in poloidally limited and diverted tokamak configurations

    Preliminary analysis of alternative divertors for DEMO

    Get PDF
    A physics and engineering analysis of alternative divertor configurations is carried out by examining benefits and problems by comparing the baseline single null solution with a Snowflake, an X- and a Super-X divertor. It is observed that alternative configurations can provide margin and resilience against large power fluctuations, but their engineering has intrinsic difficulties, especially in the balance between structural solidity and accessibility of the components and when the specific poloidal field coil positioning poses further constraints. A hybrid between the X- and Super-X divertor is proposed as a possible solution to the integration challenge

    Langmuir probe electronics upgrade on the tokamak a configuration variable

    Get PDF
    A detailed description of the Langmuir probe electronics upgrade for TCV (Tokamak a Configuration Variable) is presented. The number of amplifiers and corresponding electronics has been increased from 48 to 120 in order to simultaneously connect all of the 114 Langmuir probes currently mounted in the TCV divertor and main-wall tiles. Another set of 108 amplifiers is ready to be installed in order to connect 80 new probes, built in the frame of the TCV divertor upgrade. Technical details of the amplifier circuitry are discussed as well as improvements over the first generation of amplifiers developed at SPC (formerly CRPP) in 1993/1994 and over the second generation developed in 2012/2013. While the new amplifiers have been operated successfully for over a year, it was found that their silicon power transistors can be damaged during some off-normal plasma events. Possible solutions are discussed. (C) 2019 Author(s)
    corecore